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Abtract
Most practical applications of spatial interpolation ignore that some measurements may be

more accurate than others. As a result all measurements are treated equally important, while 

it is intuitively clear that more accurate measurements should carry more weight than less 

accurate measurements. Geostatistics provides the tools to perform spatial interpolation 

using measurements with different accuracy levels. In this short paper we use these tools to 

explore the sensitivity of interpolated maps to differences in measurement accuracy for a 

case study on mapping topsoil clay content in Namibia using kriging with external drift 

(KED). We also compare the kriging variance maps and show how incorporation of different 

measurement accuracy levels influences estimation of the KED model parameters.
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Spatial interpolation errors are an important source of uncertainty in many spatial modelling 

applications and analyses. Geostatistics provides the tools to quantify interpolation error 

through the so-called kriging variance or by using spatial stochastic simulation, but in standard 

kriging the measurement error of individual observations is rarely addressed explicitly. It is 

usually represented as a component of the nugget variance of the semivariogram, but this 

implicitly assumes that all measurements are unbiased and have the same random 

measurement error variance. In reality, different measurement precisions and accuracies may 

occur because the data used may be a merge of field estimates and laboratory measurements, 

may be measured using different instruments and laboratory methods, or may be derived using 

the same methods but in different laboratories. Often data are also measured indirectly through 

proxies, such as when soil properties are estimated from soil spectroscopy signals that are 

converted to soil property values using statistical methods such as Partial Least Squares 

Regression (Brown et al. 2006, Leone et al. 2012). In recent years observations are also 

increasingly generated through crowd-sourcing and volunteered geographic information 

initiatives, which may suffer from large measurement errors (Goodchild and Li 2012). These 

initiatives can yield large volumes of data at cheap or zero cost, but their accuracy will usually 

be less than that of institutional data. In this work we extend kriging with external drift to the 

case in which each individual observation can have a different measurement error variance. As 
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a result observations with small measurement error variance carry more weight than 

observations with large measurement error variance, both in regression modelling and kriging. 

The methodology builds on well-known approaches in geostatistics that go back as far as 

Delhomme (1978) and is also presented in text books such as Chilès and Delfiner (1999, 

Section 3.7.1). It boils down to modification of the kriging matrix by adding the measurement 

error variances to the diagonal elements of the covariance matrix. In case of correlated errors, 

the off-diagonal elements will also be affected. Solving the kriging system using the modified 

kriging matrix automatically decreases the kriging weights of observations with larger 

measurement error variances. Also, the influence of measurements on estimation of the trend 

coefficients is reduced when the measurement error variance is larger. While this is all well 

known, it is rarely applied in practice. This is unfortunate, because differences in measurement 

errors may have a large impact on resulting maps and hence the prediction accuracy can be 

markedly improved if these differences were taken into account. Differences in measurement 

error variances are typically also not included in estimation of the semivariogram and trend 

coefficients. In this presentation we show that measurement error variance can fairly easily be 

included in parameter estimation (both for estimation of the variogram parameters and 

regression coefficients) by taking a maximum likelihood estimation approach. Further to that, 

we account for systematic measurement errors by representing the (unknown) systematic error 

as a zero-mean random variable that is equal for all observations from the same source. 

Uncertainty about the variogram parameters can be incorporated by taking a Markov Chain 

Monte Carlo approach. 

The statistical methodology is largely known and fairly straightforward but requires 

adaptations of existing software implementations. We implemented the methodology as R 

scripts, which in future will be extended to scalable R functions. We use a digital soil mapping

application using topsoil texture data from the Africa Soil Profiles database (Leenaars 2013) 

and the LandPKS project (Herrick et al. 2013) to map topsoil clay content for Namibia. We 

compare prediction maps and prediction error variance maps with those obtained when 

measurement error is ignored. Results show marked differences and indicate that measurement 

errors should not be ignored, particularly when there are large differences in accuracy levels 

between observations within the conditioning dataset. We also explore the sensitivity of 

mapping results for different degrees of spatial autocorrelation of measurement errors. 

One important reason that the methodology has not often been applied in practice is that it 

requires that the measurement error variances of all observations are known. In reality, this is 

seldomly the case because data come from many sources and their accuracies are rarely 

recorded. In our case study we used the texture triangle and expert judgement and expert 

elicitation (O’ Hagan et al., 2006) to quantify the measurement error variances, but these are 

no substitute for real values and hence it is important that point data used for spatial 

interpolation are routinely accompanied by measures of their accuracy. 

Extension from linear multiple regression and regression kriging to non-linear machine-

learning regression methods, such as artificial neural networks, support vector machines and 

random forests, is less obvious. One approach might be to duplicate more accurate 

observations or assign weights to observations depending on their measurement error variance, 
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but this can only partly solve the problem and has a large ad hoc character. More satisfactory 

solutions should be found, but these should be sufficiently generic and work for the entire 

family of machine-learning methods, because in many practical machine-learning applications 

blends of multiple algorithms are used to optimise performance. This is important too, because 

in recent decades spatial interpolation makes use more and more of explanatory information 

contained in covariates and machine-learning algorithms are increasingly popular because they 

are more flexible than linear methods and usually produce more accurate predictions (e.g. 

Hengl et al, 2015). 
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