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Abstract

We propose a method to find a new center, based on robustness assessment 
(bootstrap on data samples to infer variance). The facility optimal location 
problem is recalled. The objective function that includes the variance is explained. 
A robust center minimizes the variance among a large set of Lp-norms. Some 
validating results are presented in 1 dimension and an application illustrates the 
process in 2 dimensions. The robust center shows a location which resists to 
random and moderate changes of the demand. It is somehow sustainable in space, 
because it adapts to the shape of the (spatial) distribution of demand points.
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1. Searching for an Accurate Center 

Accuracy has several  meanings.  For instance,  a  first  property of  an accurate
assessment is the correctness, the freedom for mistake or error. A second property
is the exactness: the clue is exactly conforming to truth or to a standard. From these
two definitions and in practice, finding the degree of conformity of a measure to a
standard or a true value is also of high interest. 

Some specific methods can be developed to assess spatial accuracy,  i.e. in our
case to locate an accurate center in space. This objective leads to a key question:
what is the primary  truth or  standard model to be considered? Since a model is
somehow a view of the world related to a (group of) subject(s), it can be defined as
an objective to reach. That is basically the approach of the Operation Research,
which  consists  in  writing  the  objective  function  and  in  drawing  the  frame  of
constraints in which the solution should be found. In our study, a center may be a
(collection of) optimal location(s). In optimization problems, an exact and unique
solution can sometimes be fixed, or not. In those cases, it may require heuristic or
stochastic processes to tend to a correct solution. Thence, statistics and resampling
can be useful. 

In this paper, we propose a method to compute the most robust center in space.
Robustness is here set as the capacity of a center location to remain stable in space
and time while keeping to serve the fixed objective on the long time. In spatial
planning, this infers a property of (spatial) sustainability. According to a set of  n
demand points  xi (with their coordinates) and for a given  Lp-norm (or Minkowski
distance, called here  DLp) minimization (cf. Equation (1)), it is indeed possible to
approximate an optimal center (c*) responding to this type of accuracy, where the
model is the robust location (the center c) that serves the demands and the degree of



conformity is computed by a spatial bootstrap. The value of the  Lp-norm which
aggregates  the  distances  between the  demand points  and  the  center  defines  the
objective of the metric chosen. 

(1)

2. Optimal Centers: Equity, Equality or Efficacy?

Most  of  the  approaches  to  locate  an  optimal  center  are  based  on  a  cost
assessment on a continuous space or along a road network (Hakimi, 1964, Nickel &
Puerto, 2005). Since building a health center (figure 1), a waste collection center
(figure 2) or a transport station (figure 3) has a non negligible cost, urban planners
expect those centers to serve for a long time in the best way. For instance, these
three types of centers may correspond to several objective functions and associated
Lp-norms (resp. equity with p=1, equality with p=2 or efficacy with p→∞). But we
do not know anything about their behavior regarding spatial situation sustainability.

Figure 1: The 1-center (p→∞) provides a quasi-boolean behaviour of the demand point
influences: only the points on the Tchebychev circle have an influence (equity). This

approach may be used to fix a health center. 

Figure 2:  The gravity center (p=2) induces an equal value for all the point influences
anywhere on space (equality). This approach may be used to fix a waste collection center.

Figure 3:   The 1-median (p=1) favours the demand points close to the center (efficacy or
efficiency). This approach may be used to fix a logistic transport station.



Spatial Accuracy 2014, East Lansing, Michigan, July 8-11

3. Toward a Robust Center 

Thence, an interesting property of a center is its sustainability, i.e. its capacity to
respond to the initial objective for a long term, despite many unexpected changes of
the demand location in the future. This property is linked to statistical robustness
(Hoaglin  et  al.,  1984,  Huber,  1981)  and  center  sensitivity (Josselin  & Ladiray,
2002, Josselin & Ciligot-Travain, 2013). 

3.1. Using Bootstrap and Resampling

The objective function we propose aims at  minimizing the center  sensitivity,
given a metric to compute the cost to access to the center. This sensitivity can be
assessed  using  Monte-Carlo  or  bootstrap  simulations  (Thomas,  2002).  The
simulations can  experiment  random local  change of  the population,  possibly in
relation  with  the  territorial  planning  which  plans  (or  not)  specific  urban
development.  For  both  approaches,  the  objective  is  to  minimize  the  variance
Var(c*) of the center location (See Equation (2)), through all possible  Lp-norms,
according to stochastic change of demand location. A set of m bootstrapped spatial
distributions (cj*)  of points is  computed using a drawing with replacement.  For
each of  them, the deviation from the initial  center  cinit is  measured.  Lower this
variance, better the location of the center in terms of spatial  sustainability.  This
means that, despite a random urban evolution based on the initial demand point
structure, the robust center location (r*) remains still relevant over time. 

(2)

This approach can be useful in at least two cases: 

- according to a fixed objective (equity, equality, efficiency in the access to the
center),  it  becomes possible to measure how the center location responds to the
initial objective in spite of possible or predictable urban changes;

- over all the possible metrics (Lp-norms) to be used for computing the distances
from the demands to the center, it allows to find the most robust center over time,
that  is  to  say the  center  whose  optimal  location  is  the  most  stable  for  all  the
simulations of demand changes. For this second case, the solution we look for is an
optimal couple Center/Lp-norm i.e. {c*;p} which minimizes Var(c*) (figure 4) and
which depends on the spatial distribution of the demand.

Figure 4:   Among all the possible Lp-norms, the robust center r* minimizes the variance
Var(c*) for  the set of centers c* of the bootstrapped spatial distributions



3.2. Results in 1 Dimension

To comprehend the relationship between the spatial configuration and the metric
to maximize the robustness, we propose an algorithm based on a gradient descent
which converges to the most robust center adapted to the probable location change
of demand. We first show the algorithm efficiency in 1 dimension for finding the
Median (minisum operator,  p=1), the Mean (p=2) and the Mean of the extreme
values (minimax operator, p→∞) of the distribution. Some results illustrate how the
metric  depends on the spatial  distribution of the demand,  when considering the
sustainability  (i.e. robustness)  of  the  center.  The  figure  depicts  six  different
distributions. The table 1 shows the estimation of the central value of three of them
(H1, H2 and H3), once the value of p is fixed. The estimations are very close to the
reference center values. The table 2 shows the couple {p;r*} that minimizes the
variance (for H2, H4, H5 and H6). The most robust centers correspond to different
Lp-norms according to the shape of the distribution (here in one dimension).

Figure 5:   Six different distributions of data in one dimension

Table 1: Comparison between the center of a distribution (in one dimension) and its robust
estimation using bootstrap (m=500), given a value of p and a distribution H. They are very

close, proving the algorithm efficiency.

Distribution pfixed c*init r*robust

H1 1 5 5

H1 2 5.14 5.14

H1 ∞ 6 6

H2 1 -0.16 -1.21

H2 2 0.22 0.23

H2 ∞ 0.1 0.09

H3 1 10.21 10.19

H3 2 13.1 12.8

H3 ∞ 15.3 16

Table 2: Couples {p;r*} which minimize the variance Var(c*) are processed. The value fund
for p differs according to the shape of the distribution.

Distribution pfound r*robust Comment

H2 1.97 -0.3 Close to Gaussian distribution and mean

H4 3.4 10.9 Tends to an infinite norm (minimax)

H5 1 5 Fits a median

H6 2.95 9.97 Between a minimax and a mean
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3.3. Application on the Geographical Space

The approach can be extended to 2D spaces to locate different centers associated
to particular spatial distributions.When the spatial distribution is Gaussian, the most
robust center is the  gravity center with  p=2 (that minimizes the sum of squared
distances). When the spatial distribution is asymmetric with a strong core and a few
outliers, the most robust center is likely the 1-median (p=1, that minimizes the sum
of distances). When we deal with two separate groups of demand points, generally
the most robust center becomes the 1-center (p→∞, that minimizes the maximum
distance to the center). The figure 6 provides a set of optimal centers, including the
robust center in a continuous space in two dimensions.

Figure 6:   An example of robust location: close but different from the other centers 

Conclusion
Once  the  method  reliability  is  validated  by  experiments,  we  generalize  the

process  to  any  distribution  whose  spatial  law  is  unknown  and  show  how  our
adaptive method can be used to find the 'robust' center. For any spatial distribution
and according to a certain way to introduce noise in the demand location (random,
constrained by urban planning), there exists a 'robust' center which corresponds to a
specific  value  p of  the  Lp-norm. This  center  may be  somehow considered as  a
'sustainability' location, since it keeps its properties for serving the population over
time.  Complementary  experiments  must  be  done  to  assess  the  robust  center
properties  and  to  verify which  statistical  distribution it  fits.  More mathematical
proofs are expected in a near future to fix the robust center formalism.
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