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Abstract
The purpose of this work is to propose a method to analyse the similarity between two spatial

point patterns. Such similarity should be understood in the sense that both point patterns come

from the same spatial point distribution. For this aim, first, we make use of a space-filling

curve as a tool to linealize the space, with independence of its dimension, second, we model the

count of points in the resultant grid by means of the multinomial law, and after that we test the

homogeneity of both multinomial distributions by using the negative of the Matusita’s affinity.

Finally, we evaluate the performance of the procedure by means of a simulation study.

I INTRODUCTION
The understanding of spatial point patterns is one of the major challenges of geographical anal-

ysis and has interest in many sciences (e.g. biogeography, crop sciences, ecology, geology,

etc.). Spatial patterns and spatial statistical sampling is also a major issue in spatial data quality

assessment because sampling is a very common procedure in order to derive estimates or per-

form tests (Ariza-Lpez, 2002). For these reasons the evaluation of the spatial similarity of two

observed samples can be of interest in many cases.

It is usual that an estimate of an attribute or property (e.g. concentration of a mineral, positional

accuracy, etc.), is derived from a sample of points under some spatial distributional hypothesis

for such sample (e.g. following a theoretic or an observed spatial pattern). We think that,

previous to any error or uncertainty consideration about the attribute or property estimation, we

must confirm the underlying hypothesis about the position of samples, in our case: the spatial

distribution of the taken sample in relation to other observed spatial pattern.

Two common methods in use to investigate discrete point events are the distance- and area-

based tests. In the case of distance-based tests, we use whatever distance (e.g. Euclidean)

between two events in order to determine a random, clustered, or uniform spatial pattern to the

points (Bailey and Gatrell, 1995). On the other hand, in the case of area-based tests, we count

the number of point events within a predefined spatial area (e.g. a quadrant, a census unit, etc.)

(Andresen, 2009).

Our proposal is very different to other techniques such as the Ripley’s K function (Ripley, 1976).

The K function is a distance-based test that characterizes point processes at many distance scales

and allows the detection of different behaviors (e.g. random. clustering, inhibition) (Freeman

and Ford, 2002); and it can be used to test different specific patterns (e.g. homogeneous Pois-

son process -complete spatial randomness-, Matern hard-core process, Strauss process, etc.)

(Dixon, 2012). For the correct application of these functions it is needed to accept several as-

sumptions that not necessarily are fully met in reality, and if conditions are not met, the output

may be incorrect (Bolibok, 2008).
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a) Batholiths b) Falt c) Synclinal/anticlinal 

d) Shift e) Catalasite/mylonite 

Figure 1: Examples of some geological structures that can influence spatial patterns: a) batholiths, b)

falt, c) Synclinal/anticlinal, d) shift, e) cataclasite/mylonite

In this setting, we develop an area-based test centered on the counting of positional events

(not attributes), which does not assume a theoretical model for the spatial distribution of the

events (spatial distribution free). So, it can be applied for the comparison of two spatial samples

(e.g. two control test samples, two field works, presences at two different times, etc.), with

independence of sample sizes. For instance, the Figure 1 shows different geological structures

that can determine the presence of point events in the space or the distribution of control samples

in the space, and this method allows the comparison in such cases, and any other.

This method follows two steps; the first one is to make use of the space-filling curves (Sagan,

1994) as a tool to order the space, with independence of its dimension. The space-filling curves

provide a partition of the space for a fixed level of neighborhood. The second one is to model the

count of points in the resultant grid by means of the multinomial law. This way, the problem to

test the similarity between sampled spatial distributions is equivalent to the problem of testing

the homogeneity of two multinomial distributions. For doing this, we considered as a test

statistic the negative of Matusita’s affinity (Matusita, 1967).

On the other hand, the spatial distribution of samples may have an effect on the representative-

ness of the sample. This is especially true in complex situations, although, at the end of the day,

for many spatial data properties, the spatial pattern can be considered uniform. To evaluate the

usefulness of the proposal, we carried out a simulation study in order to analyze the effect of

the space-filling curves and the test statistics used, as well as, the effect of the sample sizes and

the level of iterations in the curves. In particular, we took the Hilbert’s curve and the Peano’s

curve, and we analyze the uniform pattern and for other spatial patterns, specially, those patterns

associated with some well-known geological structures. Our findings suggest the methodology

is able to detect the similarity of two spatial samples of points for all the tried cases.

This paper is organized as follows, after this introduction follows the description of the ap-

proach, where we present the statistical basis and the procedure for its application; next a simu-

lation experiment is developed using some spatial patterns and levels of the space-filling curves.

Finally conclusions are presented.

II DESCRIPTION OF THE APPROACH
As said in the Introduction, the aim of this work is to propose a formal procedure to test whether

two spatial distributions of points can be considered as similar or not. By Similar one should

understand that coming from the same spatial pattern. To show how this approach works, let

us consider the bivarate case, although for a general dimension, the procedure follows the same

steps. So that, let X11, X12, . . . , X1n1 and X21, X22, . . . , X2n2 be two independent samples of

points from two spatial patterns with size ni, i = 1, 2; and without loss of generality, let us

suppose that both samples take values in the unit-square S = [0, 1] × [0, 1]. The application
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of a particular space-filling curve induces a partition on S with M = 2ν × 2ν squares, where

ν represents the number of iterations in the space-filling curve construction. This way, for a

given space-filling curve and a fixed level ν, the sampled points can be grouped into M classes,

C1, C2, . . . , CM , or equivalently, taking values in ΥM = (1, 2, . . . ,M). The order in M is

induced by the space-filling curve considered. Note that the degree of neighborhood is different

for each space-filling curve, specially, when the number of iterations increases.

Let πt
i = (πi1, π2m, . . . , πiM)t be the cell probabilities associated with each multinomial distri-

bution, that is, πim = P [Xi = m], for i = 1, 2, and 1 ≤ m ≤ M , and where the superscriptt

denotes transpose. The application of a particular space-filling curve to both samples of points,

provide us the number of points falling into each class in both samples. That is to say, we obtain

the observed frequencies on each cell and hence, the maximum likelihood estimator of π̂i, say,

π̂i =
nim

ni
, i = 1, 2, m = 1, . . . ,M . As a result, the problem of testing whether two spacial

distributions are equal is equivalent to test whether two multinomial populations are equal. So

that, our objective is to test the following null hypothesis

H0 : π1 = π2. (1)

For this purpose, several measures able to discriminate between multinomial populations can be

used. Here, we consider a f -dissimilarity measure between multinomial populations because

the smaller these measure is, the harder it is to discriminate between them. Specifically, it is

considered the negative of Matusita’s affinity (Matusita, 1967) defined by

T = −
M∑

m=1

√
π̂1mπ̂2m,

which is a member of a class of test statistics based on f -dissimilarity (see Zoografos, 1998;

Alba et al., 2009) and references therein for further theoretical results).

To decide when to reject H0, we need to know the null distribution of T , or at least an approxi-

mation to it. Following Zoografos (1998), under H0, the asymptotic null distribution of the test

statisticn is given by

8
n1n2

n1 + n2

(1 + T )
L−→ χ2

M−1. (2)

So, we reject H0 if

8
n1n2

n1 + n2

(1 + Tobs) ≥ χ2
α,M−1,

where Tobs represents the observed value of the test statistic T , and χ2
α,M−1 denotes the 1 −

α percentil of the chi-square distribution with M − 1 degrees of freedom, 0 ≤ α ≤ 1; or

equivalently, we reject H0 if the corresponding p-value is less than or equal to α, that is, if

p = PH0

[
χ2
M−1 ≥ 8

n1n2

n1 + n2

(1 + Tobs)

]
≤ α,

where PH0 stands for the probability law under the null hypothesis.

As observed among others in Kim, 2009, Alba et al., 2009 or Jiménez-Gamero et al., 2014, the

χ2 approximation is rather poor for small and moderate sample sizes, and the approximation
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of the null distribution by means of a parametric bootstrap estimator behaves better than the

asymptotic one. From these results, we approximate the p-value by bootstrapping (see Alba-

Fernández et al. 2009 for the theoretical properties of the bootstrap estimator).

The application of the procedure to study of similarity of two spatial samples of points follows

the steps:

(1) Given the two spatial distributions of points {X1j}1≤j≤n1
and {X2j}1≤j≤n2

, choose a space-

filling curve and the number of the iterations in its construction, ν. These decisions will

determine the value of M .

(2) Apply the space-filling curve and obtain π̂i, i = 1, 2.

(3) Calculate Tobs, the observed values of T .

(4) Approximate the corresponding p-value by bootstrapping.

(5) Conclude if the sample spatial distributions can be considered equal or not.

In addition, the bootstrap algorithm to approximate the p-value for testing (1) can be assessed

as follows:

(i) Calculate Tobs, the observed values of T .

(ii) For b = 1, . . . , B, generate 2B independent bootstrap samples,
{
X∗b

1,j

}
1≤j≤n1

,
{
X∗b

2,j

}
1≤j≤n2

from the pooled multinomial distribution M(n1 + n2; π̂01, . . . , π̂0M) where

π̂0m =
n1m + n2m

n1 + n2

, m = 1, . . . ,M.

(iii) Calculate the values of T for each couple of bootstrap samples, say T ∗b, b = 1, . . . , B.

(iv) Approximate the p-value by means of p̂ = card
{
b : T ∗b ≥ Tobs

}
/B, respectively.

III SIMULATION EXPERIMENT
To evaluate the performance of this method, we have carried out a simulation study. The goal

of this experiment is twofold, the first objective is to analyze the behaviour of the proposed

methodology for small sample sizes with respect to the type I error for some space-filling curves

and levels of sweep. In other words, if the procedure is able to conclude if two sample of points

come from the same spatial pattern when they really do.

Together with this, the second task is to evaluate the power of the procedure, that is, if this

method is able to detect two samples of point which have been generated by different spatial

patterns. Next we briefly describe the simulation experiment and display the results obtained.

All computations in this paper have been performed using scripts written in the R language

(http://www.cran.r-project.org).

The methodology we propose is independent of the spatial pattern of sample of points, however,

we are going to evaluate its behaviour by considering some spatial patterns related to the geolog-

ical structures mentioned before (see figure 1). In particular, we will identify the uniform pattern

with Pattern 1, the bivariate normal N(μ,Σ) with μ = (0.25, 0.25), Σ =

(
0.25 0
0 0.25

)
sim-

ulates a synclinal/anticlinar(Pattern 2) and the bivariate normal N(μ,Σ) with μ = (0.5, 0.5),

Σ =

(
0.25 0.8
0.8 0.25

)
reproduces a Batholiths (Pattern 3) (see Figure 2) for a scatter plot of a

sample of size 150).

So, we have generated two uniform samples on the unit-square of sizes n1 = n2 = 25, we

have applied the method following the steps (1)-(5) described above with B = 1000 bootstrap
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Figure 2: Example of Pattern 1 (left), Pattern 2 (center) and Pattern 3 (right).

replications. We repeated this 1000 times and we calculated the fraction of p-values less than or

equal to 0.05 and 0.10 (denoted as f05 and f10 in tables), which are the estimated type I error

probabilities for α = 0.05, 0.10, respectively. We have repeated the whole experiment for the

sample sizes n1 = n2 = 50, 150. Among the available space-filling curves, we have considered

the Peano’s and the Hilbert’s curve (identified as n and h in tables). Note the value of M is

related to the sample size and ν, and we try to find an agreement between them. Here, we try

the values ν = 1, 2. We have repeated this experiment for Patterns 2 and 3. The estimated type

I error probabilities are shown in Table 1.

Looking at this table, we can conclude that the estimated type I error probabilities are quite close

to the nominal ones in all the tried cases and the simulations results do not show differences

between the space-filling curves. On the other hand, we have also studied if the methodology

is able to distinguish between spatial patterns, and for this task we generated a sample of points

following the Patter 1 of size n1 = 25 and other sample of points from Pattern 2 of size n2 =
25. We applied the methodology in the same conditions as before. We repeated the whole

experiment 1000 times and we calculated the fraction of p′s values less than or equal to 0.5, 0.10,

which are the estimated power for α = 0.5, 0.10 (now, f05 and f10 in tables). We repeated the

experiment for samples of points following the Patterns 3. The estimated powers are shown in

Table 2. From these results, we can say the procedure is able to distinguish clearly between two

different Patterns.

n1 = n2 ν curve Pattern 1 Pattern 2 Pattern 3
25 1 f05 f10 f05 f10 f05 f10

n 0.042 0.099 0.052 0.100 0.048 0.096

h 0.047 0.102 0.052 0.096 0.050 0.096

50 1 f05 f10 f05 f10 f05 f10

n 0.055 0.103 0.053 0.105 0.054 0.106

h 0.053 0.101 0.053 0.101 0.053 0.107

150 1 f05 f10 f05 f10 f05 f10

n 0.054 0.104 0.058 0.107 0.046 0.093

h 0.057 0.099 0.059 0.104 0.045 0.098

150 2 f05 f10 f05 f10 f05 f10

n 0.056 0.104 0.048 0.094 0.060 0.108

h 0.057 0.103 0.048 0.093 0.057 0.107

Table 1: Estimated type I error probabilities.
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n1 = n2 ν curve Pattern 1 vs. Pattern 2 Pattern 1 vs. Pattern 3 Pattern 2 vs. Pattern 3
25 1 f05 f10 f05 f10 f05 f10

n 0.429 0.548 0.409 0.534 0.570 0.665

h 0.427 0.557 0.366 0.501 0.537 0.635

50 1 f05 f10 f05 f10 f05 f10

n 0.747 0.837 0.719 0.802 0.886 0.938

h 0.748 0.837 0.715 0.802 0.881 0.928

150 1 f05 f10 f05 f10 f05 f10

n 0.994 0.995 0.998 0.999 0.999 1.000

h 0.995 0.995 0.998 0.999 0.999 1.000

150 2 f05 f10 f05 f10 f05 f10

n 0.987 0.994 1.000 1.000 1.000 1.000

h 0.989 0.995 1.000 1.000 1.000 1.000

Table 2: Estimated power.

IV CONCLUSION
To sum up, the procedure introduced in Section 2 takes advantage of the use of space filling

curves as a way to linearize spatial distributions, and following the order induced by the space

filling curve for a fixed level of its construction, the count of the number of points falling into

each grid may be modeled by a multinomial distribution. For testing the homogeneity of two

multinomial laws, the negative of Matusita’s affinity is considered. Finally, the results of the

simulation experiment reveals that the proposed method provide us a statistical tool in order to

decide about the similarity of spatial samples.
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