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Abstract—When improving existing monitoring networks, to
adapt to changed requirements, keeping as many stations as
possible is cheapest and therefore often preferred over a
completely new setup. Here, the sampling design for ambient
gamma dose monitoring in Norway is optimised. We consider
two goals: equal spread of stations, and detection of plumes that
affect densely populated areas. For optimisation, we compare
and improve algorithms that replace the existing stations one
by one: a greedy algorithm replaces the most unimportant
station by the best candidate station; random replacement
keeps all random improvements. A new approach is random
replacement that rejects all sampling designs with too many
stations moved. We add a penalty term to the cost function to
search sampling designs with few station moves, This combines
the advantages of the two previous approaches: The greedy
algorithm replaces the most unimportant stations only,
therefore as many stations as possible are kept. Random search
can consider more candidates and often is faster. Random
replacement with penalty is faster than the greedy algorithms,
whereas for detection, the resulting sampling designs were of
the same quality: moving a station pays off with a similar
improvement in cost.

Keywords: update cost, spatial sampling: design, space coverage,
plume detection, greedy algorithm

[. INTRODUCTION

Moving environmental sensors is often expensive and
difficult due to the lack of suitable locations. Therefore, when
improving existing monitoring networks, it is desired to keep
as many stations as possible. Most European countries run a
network of sensors for ambient gamma dose rates. They serve
for the observation of background values as well as for early
warning and coordination of countermeasures in case of
nuclear emergencies like accidental releases from nuclear
power plants (NPPs). Many of these networks were set up
after the Chernobyl accident in 1986. The aims of gamma
dose rate monitoring have changed over the last 20 years, and
adaption to new threats like terroristic attacks, and
international harmonisation are an issue.

We.optimise sampling designs for two different goals:
equal spread of the stations over the whole area, and detection
of plumes that affect many people. The fitness of a sampling
design to eithér of these goals is quantified by cost functions,
see section I1.A. The optimal designs for these aims are
Opposed, as stations for detection will be clustered in regions
of dense population and high risk, see fig. 2. Therefore they
provide good test cases for optimisation algorithms.
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Optimisation should minimise the cost functions for
sampling designs with few station moves. Therefore an
algorithm is considered good, if it finds the sampling design
with lowest cost, given the number of station moves. Besides,
algorithms should be fast, i.e. find good sampling designs by
few evaluations of the cost function. Speed up is important
for real-time applications or if the effort for the evaluation of
the cost function is high, like in Beekhuizen (2008). We
compare two known algorithms and develop a new approach
to fit our requirements. Random replacement of stations,
keeping all improvements, is a very simple, and often fast,
algorithm. Greedy algorithms outperformed other methods in
the optimisation of the mean average kriging variance
(Baume et al. 2009) and are likely to keep many stations. The
new algorithm is random search with penalty on station
moves.

The optimisation algorithms considered here move
stations one by one and keep the number of stations constant,
The greedy algorithm consecutively deletes and adds stations,
always selecting the best of all given possibilities. This
ensures that few stations are moved, but for each
improvement all candidate stations must be browsed, thus the
number of candidates is limited. The random algorithm
moves stations by chance and keeps all improvements. The
number of candidate stations can be very high, but this
algorithm tends to move more stations than the greedy
algorithm for the same improvement of the cost function. The
new approach avoids this: we add a penalty term that is
proportional to the number of moved stations, to the cost
function. A sampling design is rejected, if the high number of
moved stations is not outweighed by the improvement in the
original cost function.

1. METHODS

~ Monitoring of ambient gamma dose rates in Norway is
chosen as the use case, because its existing monitoring
network consists of only 27 stations at the main land and that
makes optimisation by greedy algorithms feasible. The area is
discretised to 5 km x 5 km grid cells x € X, and among
these, a sampling design § = {xy,--,%,,} is chosen.

A. Cost Functions

The two aims of the optimisation are translated to cost
functions to be optimised by the algorithms. Equal spread of
the stations within the whole area of interest may be a good
choice if measurements shall be interpolated. We define the
cost function as the sum of the Euclidian distance from all
grid cells to the closest station
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This is a common criterion for space coverage, e.g. used by
van Groenigen (1997). It was computed using the spatstat R
package (Baddeley and Turner 2005). The cost of the existing
sampling design was 7.33E+8.

The detection cost function is based on simulated plumes,
see section I1.B. Let x € X denote the grid cells, t €T the
time steps. Then 7;(x, t) is the dose rate of plume i at location
x and time t. It is defined as the hourly average of the dose
rate increase above background. We consider a plume to be
detected, if the dose rate increase at any time at any sensor
location exceeds 50 nSv/h. This is the legal detection limit for
ambient gamma dose rate sensors in Germany [AVV-IMIS
2006, Tab. 8.1 1a]. Smaller increases are hard to distinguish
from natural variation. Thus we define an indicator function

. 1« iwvteT @ ry(z;t) < 50nSv/
I(img}z{é ; if5t e T @ ry{xy.t) < 50nSv/h

else

and use it to define an indicator for the detection of a plume
by any sensor of a sampling design
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The detection cost function is the weighted number of non-

detected plumes
e® = Y w | [iGx)
Xj €8

iplume
The weights w; are proportional to the risk of the plume

Wi = QrexP(®) Xperm: (x,£))9

where p(x) is the population in the respective grid cell. The
exponent is g = 0.05, to attenuate the effect of
inhomogeneous population density such that weights finally
differ by about a factor of 10. The cost of the existing
sampling design was 45.2.

B. Datasets

The detection cost function is based on simulations of
plumes, generated by the dispersion model NPK-puff
(Twenhofel et al. 2007). The weather data is taken from
simulations and measurements for the full year 2005 at De
Bilt, Netherlands. Simulations run 48 h from randomly
chosen start dates and yield hourly average dose rate
increases for each grid cell. Two types of outbreaks are
considered, similar to Melles et al. (2009), see tab. I, release
duration is always 1 h.

TABLE I. SOURCE TERMS OF THE SIMULATED PLUMES
Nuclide Radioactivity Height Heat cont.
“NPP Kr 88 1E+16 Bq 18 m 1 MW
accident”
“Terroristic Cs 137 1E+13 Bq 3m 100 kW
attack” )

"Nuclear power plant accident" outbreaks were started at
eight NPPs in neighbour countries of Norway, following
Lauritzen et al. (2005). Fifty plumes started at each of the
NPPs. Of these 400 plumes, 30 touched Norway and were
taken into account. At each of the five biggest cities in
Norway, ten "terroristic attack” outbreaks were started. 45 of
these 50 plumes touched Norway. Altogether 75 plumes were
considered, see fig. 1.
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Figure 1.

Sum of dose of all plumes

Population per grid cell is derived from a map of all
settlements with more than 200 inhabitants (Statistisk
Sentralbyrd 2010), assuming equal distribution of the
remaining 21% of the population. All optimisations started
with the current locations of gamma dose sensors at the
Norwegian main land.

C. Optimisation Algorithms

Four algorithms were run on each of the two cost
functions: a greedy algorithm with full and reduced set of
candidates, random search, and random search with penalty
on station moves.

The greedy algorithm first checks all sampling designs
with one of the original stations deleted and considers the one
with the best cost for further improvement. Next, the
candidate stations are added one at a time and the best one is
kept. Then, the next station is- deleted, and so on, until no
further improvements are found. Computational effort to
replace one sampling location is proportional to the number
of existing and candidate sampling locations, therefore a
subset of candidates must be chosen from the set of all
possible locations. We choose sets of 400 candidates to limit
the maximal number of iterations needed to move all 27
stations to 10 000. These candidate sets should allow near-
optimal solutions, therefore different candidate sets are used
for the two cost functions. For space coverage a randomly
placed, regular cell spacing is used. For the detection cost
function, we use settlements with more than 850 inhabitants.
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For comparison we also run the greedy algorithm with all The computation was run in the R environment for

grid cells as candidates.
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Figure 2. Optimised sampling designs for equal spread (upper) and
detection (lower)

The random algorithm was run on the set of all 13 000
grid cells. It randomly replaces one of the existing stations
and keeps all improvements. In contrast, Spatial Simulated
Annealing (SSA, van Groenigen 1997) decreases the size of
the moves during the run and accepts deterioration with a low
probability. SSA did not improve the results and was
therefore abandoned. Optimisation is terminated after 1000
iterations with no improvement.

The new approach is random search with modified cost
functions. A penalty term C(5), k = 1,2 is added to the
cost functions to focus the random algorithm on sampling
designs that keep many of the existing stations. It is
propottional to the number of moved stations

n(s) = ISorig = S|

to reject sampling designs where this number is high and not
compensated by an else very low cost function. Thus the cost
functions change to

Ck(S) + Ck(S) = Ck(S) + Tl(S) * Qe k=12

where a;, is an adjustment factor, It is set proportional to the
difference of the cost function for the existing sampling
design S,y and the one of a sampling design with one
optimal station ¥ added, and multiplied with a calibration
factor of 0.1

@ = 0.1 - ‘Ck(sorig) - Ck(sorig U {xh|
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statistical computing (R Development Core Team 2009)
using the package sp (Pebesma and Bivand 2005).

III.  RESULTS

Greedy algorithms stopped, when deleting and adding
one station not further improved the cost. Random
algorithms terminated after 1000 iterations with no
improvement. For equal spread the sampling design with
lowest cost was found by the random algorithm, but only
with ‘many stations moved, see tab. I, fig. 3. For
detection, the greedy algorithm on all cells outperformed
the other algorithms. The disadvantage however was long
computation time of about 3 days, which is about 100
times more than for the other algorithms, see tab. I, fig.
4. The data for the random algorithms are averages of 10
runs.

TABLE il. FINAL OPTIMIZED SAMPLING DESIGNS FOR EQUAL
SPREAD
Algorithm Cost Station “Iterations total
moves
greedy on all 64.8e+7 8 11799
cells
greedy on 400 66.6¢e+7 7 3385
candidates
random search 61.0e+7 24 7322
random search 62.9e+7 14 5062
with penalty
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Figure 3. Optimisation runs for equal spread. Cost for the optimal
sampling designs with given number of station moves.

Each algorithm found sampling designs with different

numbers of station moves. Fig. 3 shows the results of the

- optimization of the equal spread cost function. It shows the

cost of sampling designs with the indicated number of
stations moved. The greedy algorithms performed best and
random search with penalty is better than without. For
simplicity, the number of iterations needed is not considered
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in this comparison. This is done for the detection cost
function below.

TABLE 1L FINAL OPTIMISED SAMPLING DESIGNS FOR DETECTION
Algorithm Cost Station moves Iterations total
greedy on all cells 3.0 21 301393
greedy on 400 16.1 20 8884
candidates
random search 8.9 22 3615
random search 160 ] ° 12 2934
with penalty
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Figure 4. Optimisation runs for detection. Cost and number of station
moves for the sampling designs found.

Fig. 4 shows the optimisation runs for the detection cost
function. The lines go through the sampling designs found
during these runs, showing cost and number of iterations
needed to find this sampling design. The numbers indicate the
number of stations moved in the respective sampling design.
The horizontal lines refer to the results of the greedy
algorithm on all cells. This shows for example, that the
random algorithm reached low cost very fast. However, it
moved 9 stations to obtain a cost that was similar to the cost
of a sampling design with only one station moved, found by
the greedy algorithm on all cells. It is obvious that the
performance of the greedy algorithm on 400 candidates and
random search with penalty is between these extremes and
that the latter is faster. The numbers are at similar cost levels
for both algorithms, this means, they find sampling designs
with same number of stations moved and similar cost.

IV. CONCLUSION AND DISCUSSION

Greedy algorithms as well as random algorithms with
penalty were able to determine sampling designs with few
station moves and low cost.

The greedy algorithm on all cells as candidates yielded
very good results for the detection cost function. However, if
computation time is an issue, random search with penalty on

station moves is faster than and as good as the greedy
algorithm on a reduced set of candidates. For the equal spread
cost function, random search outperformed greedy algorithms
in improving the cost function, if number of station moves is
not limited. For keeping stations under the optimization,
random search with penalty was better than without and faster
but worse than the greedy algorithms.

The cost functions used here were simplistic and should
be improved to find optimal sampling designs for Norway. A
major improvement would be the use of more realistic
weather data for the simulation of the plumes.
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