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Abstract

Bivariate Matérn fields are widely used in the multivariate spatial model
setting. They may represent two types of measurements obtained at spa-
tial locations, such as the surface pressure and temperature. In this paper,
we obtain an explicit form on the asymptotics of the probability that the
maximum of each measurement in a fixed region exceeding a threshold si-
multaneously.
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1. Introduction

Our work is motivated by the increasing need for analyzing multivariate
measurements obtained at spatial locations (Gelfand et al., 2010; Wacker-
nagel, 2003). A common example is modeling the environment data, which
usually have several types of observations, such as the ozone level, PM2.5,
precipitation, temperature and so on. There is a large literature on statisti-
cal models for one type of observation (Cressie, 1993; Stein, 1999). Yet, it’s
practically meaningful and theoretically more challenging to model multi-
variate measurements jointly. One of the reasons is that a weather event or
a pollution level is usually affected by several factors, and these factors not
only vary with locations, but also correlated with each other. So in order
to describe the phenomenon better, it is important to consider the depen-
dence structure both for the factor itself and among factors. The latter can
be described by the cross-correlation structure (Kleiber and Genton, 2013;
Apanasovich et al., 2012; Apanasovich and Genton, 2010).

Gneiting et al. (2010) introduced the full bivariate Matérn field X(t) =
(X1(t), X2(t)), which is a R2-valued, stationary Gaussian random field on
Rd with zero mean and matrix-valued Matérn covariance functions. As spa-
tially correlated error field, this model was applied to probabilistic weather
field forecasting for surface pressure and temperature over the North Amer-
ican Pacific Northwest. For the important role of the bivariate Matérn field
in multivariate spatial modeling, we study the probability that the max-
imum of the two measurements exceeding a threshold within a bounded
region D simultaneously (Anshin, 2006; Hashorva and Ji, 2014; Adler and
Taylor, 2007; Piterbarg, 1996), i.e.,

P
(

max
s∈D

X1(s) > u,max
t∈D

X2(t) > u

)
, as u→∞. (1)

Applying the current theoretical work about the tail probability of extremes
for bivariate Gaussian random field (Zhou and Xiao, 2014), we obtain an
explicit form for the asymptotics of the tail probability (1).
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2. Main results and Discussion

In this section, we specify the bivairate Matérn field in detail and state our
main theorem with some discussions. First, we define the Matérn correla-
tion function M(h|ν, a) with parameters a > 0 and ν > 0 as follows.

M(h|ν, a) :=
21−ν

Γ(ν)
(a|h|)νKν(a|h|), (2)

where Kν is a modified Bessel function of the second kind with ν > 0.
Then, the matrix-valued covariance functions of the bivariate Matérn field
is given by

C(h) =

(
c11(h) c12(h)
c21(h) c22(h)

)
, (3)

where cij(h) := E[Xi(s+ h)Xj(s)] are specified by

c11(h) = σ2
1M(h|ν1, a1)

c22(h) = σ2
2M(h|ν2, a2)

c12(h) = C21(h) = ρσ1σ2M(h|ν12, a12), (4)

with a1, a2, a12, σ1, σ2 > 0 and ρ ∈ (−1, 1).

Gneiting et al. (2010) proved that the above model is valid (i.e., the matrix
C(h) in (3) is non-negative definite) if and only if

ρ2 ≤ Γ(ν1 + d/2)

Γ(ν1)

Γ(ν2 + d/2)

Γ(ν2)

Γ(ν12)2

Γ(ν12 + d/2)2

a2ν1
1 a2ν2

2

a4ν12
12

× inf
t≥0

(a2
12 + t2)2ν12+d

(a2
1 + t2)ν1+d/2(a2

2 + t2)ν2+d/2
.

(5)

Especially, when a1 = a2 = a12 = 1, the above condition is reduced to

ρ2 ≤ Γ(ν1 + d/2)

Γ(ν1)

Γ(ν2 + d/2)

Γ(ν2)

Γ(ν12)2

Γ(ν12 + d/2)2
, (6)

in which case the choice of ρ is fairly flexible.

Here we will focus on the standardized nonsmooth bivariate Matérn field,
that is σ1 = σ2 = 1, ν1, ν2 ∈ (0, 1). Without loss of generality, we as-
sume ν1 ≤ ν2. As a technical assumption, we assume that the smooth-
ness parameter of the cross correlation ν12 > 1. Under these conditions,
we can apply Theorem 2.1 in Xiao (1995) to show that the sample func-
tion t 7→ X(t) ∈ R2 generates various random fractals. In particular, let
X([0, 1]d) = {X(t) : t ∈ [0, 1]d} and GrX([0, 1]d) = {(t,X(t)) : t ∈ [0, 1]d}
be the range and graph of X on [0, 1]d, respectively, then

dimHX([0, 1]d) = min
{

2,
d

ν1
,
d+ ν2 − ν1

ν2

}
, a.s.

and

dimH GrX([0, 1]d) = min
{ d
ν1
,
d+ ν2 − ν1

ν2
, d+ 2− (ν1 + ν2)

}
, a.s.

In the above, dimH denotes Hausdorff dimension.

Before moving to the tail probability of extremes of the bivariate Matérn
field, let’s consider the tail probability of any pair of the two measurements
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{(X1(s), X2(t)) | s, t ∈ D}. By the covariance structure of X(·) given above,
we can see the measurements (X1(s), X2(t)) is a bivariate Gaussian random
vector with correlation c12(t− s). Let

Ψ(u, γ) :=
(1 + γ)2

2πu2
√

1− γ2
exp

(
− u2

1 + γ

)
.

It is known that (Ladneva and Piterbarg, 2000)

P(X1(s) > u,X2(t) > u) =Ψ(u, c12(s− t))(1 + o(1)), as u→∞, (7)

The exponential decay rate of the tail probability above is determined by
the cross correlation c12(t − s). So we can expect the maximum cross
correlation over the region D may dominate the exponential decay rate for
the tail probability of extremes (1). Indeed, Piterbarg and Stamatovich
(2005) have proven this statement. Specifically,

logP
(

max
s∈D

X1(s) > u,max
t∈D

X2(t) > u

)
=− u2

1 + maxs,t∈D c12(t− s)
(1 + o(1)), as u→∞. (8)

Further, let’s investigate the property of the maximum cross correlation.
When X1 and X2 are positively correlated (that is, ρ > 0 in (4)), c12(t− s)
attains the maximum ρ at any pair of measurements located at {(s, s) | s ∈
D}. Yet, when they are negatively correlated (that is, ρ < 0), the maxi-
mum cross correlation is attained at pairs of measurements located on the
boundary of D and farthest away from each other. To sum up, we have

max
s,t∈D

c12(t− s) =

{
ρ, if ρ > 0
ρM(rD|ν12, a12), if ρ < 0

, (9)

where rD := max{|s− t| | s, t ∈ D}.
Since the exponential decay rate varies a lot by the sign of the cross cor-
relation, we are going to study the exact asymptotics of (1) in two cases
separately. For simplicity, we will further suppose that a1 = a2 = a12 = 1.

Case 1: Positively correlated bivariate Matérn field Let mesd(·) be the
Lebesgue measure in Rd and Hν be the Pickands constant with index ν [cf.
Piterbarg (1996)]. By Zhou and Xiao (2014), we obtain our main theorem.

Theorem 1. For the standardized nonsmooth bivariate Matérn field X(t)
with positive cross correlation, the tail probability of its extremes on the
region D satisfies the following asymptotic property,

P
(

max
s∈D

X1(s) > u,max
t∈D

X2(t) > u

)
= K ·mesd(D)ud( 1

ν1
+ 1
ν2
−1)Ψ(u, ρ)(1 + o(1)), as u→∞, (10)

where the constant

K = (2π)
d
2 (−c′′12(0))−

d
2 r

d
2ν1
1 r

d
2ν2
2 (1 + ρ)−d( 1

ν1
+ 1
ν2
−1)H2ν1H2ν2

with ri = Γ(1−νi)
22νiΓ(1+νi)

, i = 1, 2.

The above theorem demonstrates how the cross dependence structure and
the smoothness of the surface affect the probability of extreme events to
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happen. When u is large, the maximum cross correlation ρ dominates
the extreme probability, since the rate of exponential decay is 1

1+ρ , which

is consistent as the large deviation results in (8) and (9). Moreover, since
(X1(·), X2(·)) attains maximum cross correlation on the domain {(s, s) | s ∈
D}, the extreme tail probability is proportional to the area of the region
D, i.e., mesd(D). We refer to Zhou and Xiao (2014) for more detailed
discussions.

The second important feature of (10) is that the smoothness parameters ν1

and ν2 of the surface X1 and X2, respectively, determine the polynomial
power of the threshold u. As shown in Theorem 1, the smoother the surface
is (that is, the larger ν1, ν2 are), the smaller the extreme tail probability
is. When the surface is nonsmooth, the spatial correlation tends to be
weak, which leads to more possibility to cause extreme events. We have
conducted a simulation study to verify these phenomena. Figure 1 below
are two realizations of the surface X1 and X2 on the region [0, 1]2 with
ν12 = 1.1 and ρ = 0.35 but varying smoothness parameters ν1 and ν2.

Figure 1: Top: Bivariate Matérn Field (X1, X2) with ν1 = ν2 = .4 and ρ = 0.35;
Bottom: Bivariate Matérn Field (X1, X2) with ν1 = ν2 = .8 and ρ = 0.35

Case 2: Negatively correlated bivariate Matérn field By the proof of Theo-
rem 1 (Zhou and Xiao, 2014), we found the region where the cross corre-
lation attains maximum plays a key role to determine the tail probability
(1). As mentioned before, the cross correlation of negatively correlated
bivariate Matérn field attains its maximum when the measurements are
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observed on the boundary of D and are farthest away from each other. So
the geometry of the boundary will affect the tail probability a lot. For
example, if we choose D = [0, 1]2, the cross correlation attains maximum
when two measurements are observed at the following four pairs of locations
{((0, 0), (1, 1)), ((0, 1), (1, 0)), ((1, 0), (0, 1)), ((1, 1), (0, 0))}, all of which are
the vertices of the square [0, 1]2. The asymptotics of the tail probability
(1) for this case is still under consideration.

3. Conclusion and future work

The tail probability of extremes for positively correlated bivariate Matérn
field has been established explicitly in the paper. Our results show that
the tail probability is dominated by the area where the cross correlation
attains its maximum, which means only the observations inside or around
those area contribute the most. It could be helpful if we are going to
design an efficient algorithm to simulate the tail probability of extremes for
multivariate random field. The basic results here motivate us to investigate
the problem further in the future.

The cross correlation structure of bivariate Matérn field has some restric-
tions. First of all, being a valid bivariate Matérn model, the maximum
cross correlation should satisfy (5). It may cause the choice of cross corre-
lation ρ being limited. For example, if we choose ν1 = ν2 = 0.5, ν12 = 1.1
and d = 2, the maximum cross correlation is no greater than 0.455 by (6).
Yet, in Zhou and Xiao (2014), we’ve established the explicit form for the
tail probability of extremes for a more general class of bivariate random
field which can partially solve this issue. Second, under the framework of
bivariate Matérn model, the cross correlation of two measurements attains
the maximum at the same location. Yet, in some applications, there do
exist “delay” effect such that this assumption fails (Wackernagel, 2003). If
we consider the “delay” effect in the spatial domain, it will take some extra
work to establish precise asymptotics for the tail probability of the double
extremes.

The theorem we’ve obtained is only applied to a uniform threshold u. A
natural interesting problem is to study the asymptotics of the probability
that the extremes exceeding different level thresholds, i.e., given β1, β2 > 0,

P
(

max
s∈D

X1(s) > β1u,max
t∈D

X2(t) > β2u

)
, as u→∞.

Solution of this problem requires different method and will be considered
elsewhere.
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