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Abstract

Estimating the covariance structure of spatial random processes is an im-
portant step in spatial data analysis. Maximum likelihood estimation is a
popular method in spatial models based on Gaussian random fields. But cal-
culating the likelihood in large scale data sets is computationally infeasible
due to the heavy computation of the precision matriz. One way to mitigate
this issue, which is due to Furrer et al. (2006), is to “taper” the covari-
ance matriz. While most of the results in the current literature focus on
isotropic tapering for stationary Gaussian processes, there are many cases
in application that require modeling of anisotropy and/or nonstationarity.
In this article, we propose a nonstationary parametric model, in which the
underlying Gaussian random field may have different reqularities in differ-
ent directions, thus can be applied to model anisotropy. Using the theory of
equivalence of Gaussian measures under nonstationary assumption, strong
consistency of the tapered likelihood based estimation of the variance compo-
nent under fized domain asymptotics are derived by putting mild conditions
on the spectral behavior of the tapering covariance function. The procedure
is wllustrated with numerical simulation.

Keywords: Anisotropic covariance tapering, Nonstationary Gaussian
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1. Introduction

Spatial Statistics is nowadays a very active research field in Statistics, and
has many applications in Geology, Agricultural Science, Environmental Sci-
ence, Climate data, etc. (Cressie, 1993; Stein, 1999). A common problem
in this field is the estimation of the covariance structure in spatial mod-
els based on Gaussian random fields. Likelihood-based estimators are the
most popular method for estimating the covariance parameters. However,
in large scale spatial data sets, calculating the likelihood is computationally
infeasible due to the heavy calculation of the precision matrix. There are
different ways to overcome this issue. The first idea is to set the off-diagonal
entries of the covariance matrix to zero, or to keep the first k£ subdiagonal
entries for some integer £ and put the rest of them to be zero, which is
called banding. In this way, the resulting matrix becomes sparse, and one
can use the existing algorithms dealing with sparse matrices to handle the
new covariance matrix efficiently. But, the problem with banding is that
the final covariance matrix may not be positive definite, which is a huge
drawback since all the theoretical covariance matrices must be positive def-
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inite. An alternative approach is to multiply the covariance function by
a positive definite compactly supported correlation function. By this way,
the resulting covariance matrix is again sparse, but still positive definite.
This is called covariance tapering (Furrer et al., 2006). A natural question
is that how we can use tapering to construct consistent estimates for the
covariance parameters in spatial regression models. Kaufman et al. (2008)
proposed two different likelihood-based estimations of the parameters in the
Matern covariance function, and proved the strong consistency of the esti-
mates using the results in the equivalence of stationary Gaussian measures
(Skorokhod and Yadrenko, 1973). See also Du et al. (2009) for more results
in the asymptotics of tapered maximum likelihood estimators. There are
two strong assumptions under which the consistency is proved, isotropy,
and stationarity of the underlying Gaussian random field. However, there
are many cases in application in which the data sets resemble anisotropy
and nonstationarity. There have been interests in general (not necessar-
ily in the context of covariance tapering) for dropping these conditions in
spatial modellings (See Cressie and Johannesson, 2008, Anderes and Stein,
2011 and Hitczenko and Stein, 2012). In this article, we relax both of these
conditions simultaneously. For that purpose, in section 2, we introduce a
class of parametric models for spatial modeling which are anisotropic and
non-stationary. In section 3, we state the main result of the paper which
is deriving strong consistency of the tapered likelihood-based estimates of
the variance parameter. In the last section, we demonstrate the procedure
proposed here via numerical simulation.

2. Preliminary

In this section, we introduce a class of Gaussian random fields which can be
used as spatial models. Any Gaussian field model needs a mean structure
and a covariance structure to be uniquely defined. However, finding new
models for covariance structure might be hard since one can only choose
covariance structures from the family of positive definite functions and it
is complicated to verify the positive definiteness. An alternative is to use
the spectral representations of positive definite functions or variograms.
We consider here specifically Gaussian field models with stationary incre-
ments. By applying the results in Yaglom (1957), the covariance functions
of Gaussian random fields with stationary increments on R? can be deter-
mined by a symmetric non-negative measures on R% \ {0} satisfying certain
integrability condition (See e.g., Xue and Xiao, 2011 for more details). This
measure is called spectral measure. If this measure is absolutely continuous
with respect to Lebesgue measure on R?, we will call its Radon-Nikodym
derivative the “spectral density”.

Now, we propose the following spectral density:

0_2
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where A = (\1,...,\q) € RY |, Q = Z;l 1/H;, and o2, v and H,’s are all
positive parameters. o is the variance component, and H,’s are related
to the smoothness of the model in different directions. Figures 1 and 2 are
realizations of such a Gaussian field over the two-dimensional grid [0, 1]2
with increments of 0.02 with parameters H; = 1.5, H, = 3, and v = 0.4.
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Figure 2: 2D Projection of the Simulated Surface on [0,1]* with incre-
ments 0.02

Having different parameters, H;, j = 1,...,d, for different components of
X € R?, allows the underlying random field to have different regularities in
different directions, and therefore, this model is able to capture anisotropy
appearing in spatial data sets. (See more about fractal and smoothness
properties of these models in Xue and Xiao, 2011. See also Stein, 2005).
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3. Main Result

In this section, we state the main result of the article, which is the con-
sistency of the tapered likelihood estimation of the variance parameter o2
in the model introduced in the last section under the fixed domain asymp-
totics. The following theorem, shows how to get equivalent Gaussian mea-
sures in tapering set up, which is necessary in proving strong consistency, by
putting mild conditions on the spectral behavior of the tapering covariance
function.

Theorem 1 Suppose {Z(t),t € T}, where T C R is a mean zero Gaus-
sian random field with stationary increments, and the spectral density of the
form 1 for some positive constants 0%, v, and H;, j = 1,...,d. Let’s denote
the covariance function of the process by Ko(x). If Ki(z) = Ko(z)K¢(x)
where K(x) is a correlation function, and its Fourier transform exits and
satisfies the following condition:

M
ft(/\) < )Q+I/+6 (2)

H;
(145, vl
for some € > max{Q/2,1/min{H;/2}}, and M > 0. Now, if H; > 1,j =
1,...,d, then the Gaussian measures induced by Ky and K1 will be equivalent
on the paths of {Z(t),t € T} for any bounded subset T C RY.

Remark 1 Proof of this theorem is similar to that of Theorem 1 in (Kauf-
man et al., 2008). However, due to the nonstationarity assumption, it relies
on the study of the equivalence of Gaussian random fields with stationary
increments, which is discussed in (Safikhani and Xiao, 2014).

Suppose one observes the random process at locations s;’s j = 1,...,n on
some bounded domain in R%, and K;(z) is the tapering covariance function.
Fix a tapering parameter v > 0. Define the tapering matrix T'(7) to be
T(v);; = Ki(l[si—sjl; ). This means that if [|s; —s;|| > v, then T'(v),; = 0.
Denote the true covariance matrix of the process by 3(6). Now, the idea of
tapering is to use X(6)oT(+y) as the new covariance matrix in the likelihood
of the process. Here, o means the element wise matrix product. Therefore,
the Tapered Maximum likelihood estimator (Tapered MLE ) of o2 will be:

—

o? = argmaz,> Tapered likelihood

= argmaz,» <—;log|2(9)oT(7)|—;Z’(E(G)OT(W))_lZ),

where Z is the vector of observed values of the random field at the specified
locations. Evaluating the inverse of 3(#) o T'(+y) is much faster than ¥(6)
in many cases, especially with large n. This is the benefit of using Tapered
MLE. However, this estimator might be biased in general. In (Kaufman et
al., 2008), another estimator based on the same idea of tapering is presented
which is unbiased. We call it here the Adjusted Tapered MLE, and it is
defined as follows:

argmazx,2 Adjusted tapered likelihood

— argmaz,s (—; log 2(6) o ()| - 52/ ((2(6) o T(3)) " o T(3) Z) |

adj.
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We will see in section 4 that the Adjusted Tapered MLE performs better
comparing to the Tapered MLE due to its unbiasedness. Theorem 1 is
the key part in proving the consistency of the tapered maximum likelihood
estimators for the variance component (62). The outline of the proof is
similar to Theorem 2 in (Kaufman et al., 2008), and also it relies on the
above theorem. We omit the proof here.

4. Simulation Results

In this section, we illustrate the methods discussed in previous parts by
applying them into some simulated spatial data sets. For this purpose, we
simulated 1000 data sets, each consisting of a multivariate Gaussian vector
of length 14 x 14. The locations are two-dimensional grid over [0,1]* with
increments 0.07. We added a random noise in each coordinate, uniformly
distributed on [—0.01,0.01]. We used the spectral density 1 to generate the
normal vector with H; = 1.5, Hy = 2, v = 0.5, and 02 = 1. Figure 3 shows
a simulated surface using the above parameters over the specified grid.

Figure 3: Simulated Surface on [0, 1] with increments 0.07

We used the same tapering function used in (Kaufman et al., 2008) with dif-
ferent tapering parameter v = 0.7, 0.4, 0.2, respectively. We applied three
diferent estimators for estimating o?: MLE, Tapered MLE and Adjusted
Tapered MLE (See (Kaufman et al., 2008) for details.). Table 1 shows the
results for this procedure for different tapering parameters. The values in
the table are the averages of the estimated value over the 1000 repetitions
with their standard errors in the bracket. As it was expected, by decreasing
the tapering parameter, the Tapered MLE becomes more and more biased.
However, the Adjusted Tapered MLE is almost unbiased regardless of the
changes in the tapering parameter.

Simulations show that comparing to MLE, Adjusted Tapered MLE is a
good alternative for estimating the covariance parameters in spatial data
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Table 1: Results for estimation of o

2

o? v =0.7 v=04 v=0.2
MLE 0.999(0.10) | 0.999(0.10) | 0.999(0.10)
Tapered MLE 0.437(0.06) | 0.409(0.07) | 0.400(0.17)
Adjusted Tapered MLE | 1.025(0.53) | 1.019(0.47) | 1.031(0.61)

analysis, and it is computationally feasible. Further, this method has the
potential to be generalized to more complicated models which have nonsta-
tionarity and anisotropy.

There are other methods dealing with covariance estimation in large spatial
data sets. For example, in Cressie and Johannesson, 2008, nonstationary
spatial models are defined through some fixed basis functions, and then
weighted least squares method (rather than the MLE approach) is chosen
for covariance parameter estimation with the emphasis of finding the best
linear unbiased prediction (BLUP).

References

Anderes, E. B., Stein, M. L. (2011), “Local likelihood estimation for
nonstationary random fields”. Journal of Multivariate Analysis, Vol.
102(3):506-520.

Cressie, N. (1993), Statistics for Spatial Data, Wiley Series in Probability
and Statistics, USA.

Cressie, N., Johannesson, G. (2008), “Fixed rank kriging for very large
spatial data sets”. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), Vol. 70(1):209-226.

Du, J., Zhang, H., Mandrekar, V. S. (2009), “Fixed-domain asymptotic
properties of tapered maximum likelihood estimators”. The Annals of
Statistics, Vol. 37(6A), 3330-3361.

Furrer, R., Genton M., and Nychka D. (2006), “Covariance tapering for
interpolation of large spatial datasets”. Journal of Computational and
Graphical Statistics, Vol. 15(3).

Hitczenko, M., Stein, M. L. (2012), “Some theory for anisotropic processes
on the sphere”. Statistical Methodology, Vol. 9(1): 211-227.

Kaufman C., Schervish M., Nychka D. (2008), “Covariance tapering for
likelihood-based estimation in large spatial data sets”. Journal of The
American Statistical Association, Vol. 103(484).

Safikhani A., Xiao Y. (2014), “Spectral conditions for equivalence of
Gaussian random fields with stationary increments”. In Preparation.

Skorokhod A., Yadrenko M. (1973), “On absolute Continuity of measures
corresponding to homogeneous Gaussian fields”. Theory of Probability



Spatial Accuracy 2014, Fast Lansing, Michigan, July 8-11

and Its Application, Vol. 18(1): 27-40.

Stein M. L. (2005), “Space-time covariance functions”. Journal of the
American Statistical Association, Vol. 100 (469): 310-321.

Stein, M. L. (1999), Interpolation of Spatial Data: Some Theory for Kriging.
Springer, New York.

Xue Y., Xiao Y. (2011), “Fractal and smoothness properties of space-time
Gaussian models”. Frontiers of Mathematics in China, Vol. 6(6):
1217-1248.

Yaglom, A. M. (1957), Some classes of random fields in n-dimensional space,
related to stationary random processes. Th. Probab. Appl. 2, 273-320.



