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Abstract 

Soil water holding capacity is an important soil property for understanding how much irrigation 

water is required and the quantity of nutrients that are likely to leach into groundwater. This soil 

profile level property is derived from horizon level data including soil water content, stone 

content, thickness and horizon type. Soil water content data is expensive to measure so is often 

estimated in a model that is based on more readily collected soil information. A model of the soil 

water content (or hydraulic response) has been developed and tested. Its inputs include sand and 

clay content, profile and horizon classifications. Thus, uncertainties in the derived estimate of soil 

water holding capacity are due to variability in the inputs to the soil hydraulic model, error in the 

model itself, and variability of the other key soil properties (stone content, thickness). The 

combined uncertainty is estimated in a new Soil Profile Simulator tool. It is based on a simulation 

approach that draws upon the statistical error model of the soil hydraulic model and expert 

information held in a national soil survey database in the form of probability distributions. This 

expert information characterises the variability of clay, sand, horizon thickness, stone content, 

and uncertainty in the classification information associated with the soil polygons. This paper 

describes the tool, reporting on the progress that has been made in deriving and visualising 

quantified estimates of uncertainty of soil water holding capacity. Recent advances in technology, 

including new R packages (aqp, VGAM) and Rserve have been behind this progress.  

Introduction 

Information on soil hydraulic properties is essential for the sustainable management of irrigated 

agricultural land. Providing too much water is wasteful and contributes to contamination of water 

through leaching and runoff of nutrients. Too little water will impact negatively on yield. One of 

the key soil properties for managers of irrigated land is the soil’s water holding capacity or profile 

available water (PAW), which represents the amount of water held in the soil that is readily 

accessible to plants. In New Zealand, this is taken to be the water content held between soil 

moisture tensions of 10 and 1500 kPa. Although this can be measured directly, it is an expensive 

process, so PAW is commonly predicted using other soil properties that are easier to measure or 

observe. These include texture, carbon, bulk density and soil morphology. A relationship between 

soil properties is known as a pedotransfer function (PTF). 

The soil hydraulic response has a number of features that make model predictions difficult. First, 

the response is bounded (0–100%), so either a bounded-value regression (e.g. logistic) is required 

or a transformation is needed to an unbounded domain. Second, the response is monotonic with 

respect to the tension: that is, the response strictly decreases as the tension increases. Finally, the 

response at a given tension is correlated with the response at other tensions. This complexity also 

adds to the challenge of estimating the error of the predicted response. 
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The soil properties used as inputs by the PTF are also uncertain. This paper presents progress 

with estimating and communicating uncertainty of PAW, whereby the error model of the soil 

hydraulic PTF is combined with probabilistic information on variability of the key soil inputs of 

the PTF held in a soil survey database. A new visualisation R package ‘aqp’ is used to visualise 

the results.  

Methods 

Soil hydraulic error model 

In forming an empirical model for soil hydraulic response, we use soil sample data available from 

the New Zealand National Soils Database (NSD), which provides the response at tensions of 0 

(total porosity), 5, 10, 20, 40, 100, and 1500 kPa. For each sample, texture (sand, silt, clay 

fractions) data are available, as well as the soil classification, and other factors describing the soil 

sample. 

Our methodology for response prediction uses a vector generalised linear model (VGLM). This, 

according to Yee (2015), can be thought of as a generalisation of the generalised linear model 

(GLM) with a vector of responses, which is free from many of the restrictions that the GLM 

method imposes.  We use a vector of responses formed from the logit-transformed 1500 kPa 

response (transformed to give an unbounded range), as well as the difference between the logit-

transformed 100 and 1500 kPa responses, the difference between the logit-transformed 40 and 

100 kPa responses, and so on, up to the difference between the logit-transformed 5 and 0 kPa 

response. The response at one of the specified tensions is formed from the VGLM prediction for 

1500 kPa, plus a succession of differences for lower tensions. The uncertainty of each marginal 

response (at 1500 kPa or a difference in response between tensions) is formed from the estimated 

VGLM model. 

An error model for the difference between the 10 and 1500 kPa responses (i.e. estimates of total 

available water within a soil horizon or layer), or indeed for any other convenient combination of 

responses, has been verified using independent validation data (McNeill et al. in prep.). 

Uncertainty limits, calculated in terms of containment intervals, are estimated by simulation of 

the aggregated response. 

Soil Profile Generator tool 

Lilburne et al. (2012) described how information on soil variability and uncertainty was being 

incorporated in a national-scale soil database for New Zealand called S-map (Landcare Research, 

2015). The very limited amount of soil sample data meant that an expert knowledge approach 

was used to record information on the confidence of classification and base property attributes, 

the variation of soils in a polygon and their proportional reliability, and the range of values of key 

soil properties (Lilburne et al. 2008). Variability of quantitative soil properties is stored in the 

form of probability distribution functions (pdf). The lack of point soil sample data precluded a 

geostatistical approach to modelling and simulating PAW. 

A new Profile Simulator tool has been developed that creates realisations of profiles based on the 

expert-derived information on soil variability and uncertainty. The key information used in this 

study on PAW is the PTF error model; expected variability of the stone, sand and clay content; 

type and thickness of functional horizons within a soil survey polygon; confidence in the Soil 

Order classsification, rock type of the fine material and drainage class, as well the reliability of 

the proportions of soil types within a polygon. Values for horizon stone, sand, and clay content, 
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and thickness were drawn from their respective pdfs. Each profile realisation is checked against a 

set of rules to ensure that it is still consistent with the soil definition. For example, the sum of the 

simulated horizon thicknesses must fit the pdf of the soil’s depth. Realisations that do not fit the 

rules are discarded and regenerated. The PTF error for each soil profile realisation was simulated 

and the PAW calculated. 

The tool is based on an architecture that links the S-map database in SQL Server with RServe – a 

server that responds to requests from clients by running a R script. Rserve enables R calculations 

to be performed on request without the need to start up an R session each time. A number of 

servlets have been developed that retrieve the stored uncertainty information from SQL Server, 

call a set of Monte Carlo functions to generate realisations of the key parameters required by the 

soil hydraulics error model, run this model on each set of parameter realisations, simulate model 

error, and finally, return the set of profile realisations with estimates of available water, in a range 

of useful formats (database tables, csv file, Rdata file). RServe was installed on a Linux-based 

server to allow for multi-threaded processing. 

Visualisation 

The ‘aqp’ package (Beaudette et al. 2013) is an R package designed for working with soil 

information. It contains a SoilProfileCollection class to simplify the process of working with the 

collection of data associated with soil profiles. It also includes tools for plotting soil properties by 

depth and their associated variability. 

Results 

Using a training dataset of 1007 points, a VLGM model was developed and tested on an 

independent dataset of 432 points (Figure 1). Histograms of the residuals for seven tension 

values, and the associated model diagnostics using  training and validation data, showed similar 

patterns, indicating that the model was not overfitted. Simulated error for the 1500 kPa tension 

value and total available water for an example horizon is shown in Figure 2. Response 

distributions are formed by simulation, and can be processed to give containment intervals (e.g. 

95%). While most response distributions appear symmetric, the response can in some cases be 

highly skewed where there is little training data (rare soil classes). The simulated water retention 

curves for the 500 realisations of a Barr_6a sibling (a moderately deep sandy loam) are shown in 

Figure 3. 

The Soil Profile Simulator is fast, generating 10 000 realisations of a specified soil sibling as a 

Rdata file in 28 seconds. The tool can output the realisations as tabular data or as a 

SoilProfileCollection (the class used in aqp). Use of the R aqp package facilitates drawing graphs 

of the soil profile. Figure 4 compares the 500 realisations of estimated PAW with the PAW that is 

listed on the S-map fact sheets (123.17 mm). The fact sheet value is estimated using the mean soil 

hydraulic response with mean values for clay and sand content, along with mean horizon 

thickness, stone content, and modal horizon classification. The mean PAW of the 500 realisations 

is 122.96 mm with a standard error of 1.2356 and a standard deviation of 27.62. Figure 5 shows 

the 500 soil profile realisations in terms of stone, sand and clay content down the profile. The 

variability of PAW down the profile is shown in Figure 6, where the darker grey area is the 25% 

to 75 % quantile, and the dashed lines show the 95% confidence interval. 
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Figure 1: Measured-versus-fitted plots of the soil hydrological response for seven tension values. 

The vertical lines are plus and minus one standard error of the prediction uncertainty. 

Figure 2: Histograms showing the simulated error (1500 kPa and total available water (TAW)) 

for an Allophanic soil with a loamy functional horizon (sand 15%, silt 57.5%, clay 27.5%). 
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Figure 3: Simulations of the water retention curve for each of the four horizons of the Barr_6a 

sibling (a moderately deep sandy loam) as simulated by the soil hydraulic PTF error model. 
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Figure 4: Histogram of the profile available water (PAW) of 500 realisations of the Barr_6a 

sibling. The red line shows estimated PAW where the mean values are used for the soil hydraulic 

response; clay, sand, stone content; and horizon thickness. The circles along the x axis indicate 

the distribution of the PAW estimates. 

 

 

Figure 5: Soil profile realisations (n = 500) from the Soil Profile Simulator showing the 

variability of stone, sand and clay content down the soil profile of the Barr_6a sibling. 
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Figure 6: The variability of profile available water (PAW) down the Barr_6a soil sibling profile. 

The blue line is the median PAW from the 500 realisations, the solid and dashed grey lines 

indicate the 5% and 25% quantiles, respectively. 

The speed of the Soil Profile Simulator tool also allows many siblings to be simulated according 

to the uncertainty of the proportions of each soil type within the soil survey polygons. Thus map 

realisations of PAW can be generated.  

Discussion 

Spatial uncertainty 

The use of an expert approach to recording information about uncertainty within S-map is 

currently limited by the lack of any quantitative information about the spatial accuracy of the 

polygon line work. In the future, as we build in knowledge of soil-landform relationships, either 

explicitly or via digital soil mapping approaches, we will be able to represent this spatial 

uncertainty. For example, in a case where a soil type is linked to concave slopes and gullies, the 

weaker the membership of a DEM pixel in the concave-slope/gully class, the more uncertain the 

association with the soil class. This uncertainty can be added to the simulation tool. An 

alternative approach could be to use an expert approach to simplistically quantify the possible 

offset of each polygon line boundary. 

Correlation 

Another current limitation is the lack of information on both correlation between soil properties 

and spatial autocorrelation. The former was accounted for by using an approach whereby 

simulated profiles that did not meet known constraints were discarded. For example, S-map 
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contains pdfs of horizon thickness. Some horizons will be inversely correlated – if one horizon is 

thicker than the mean, then at least one other horizon must be thinner in order for the overall 

depth (up to 1 m) to be maintained. If the sum of the simulated thicknesses was not consistent 

with the range of the depth pdf, then that realisation was discarded and another regenerated. The 

tool stops after one thousand attempts to generate a valid realisation. However, lack of 

information on the spatial autocorrelation of soil properties means that this aspect cannot be 

addressed at this point. 

Conclusion 

Conventional soil survey databases do not lend themselves to exploring the impact of uncertainty 

in soil information. However, progress has been made in deriving and visualising quantified 

estimates of uncertainty in key soil properties related to the soil water holding capacity. This has 

been enabled by recent advances in technology, including new R packages (aqp, VGAM) and 

Rserve. 
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