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In the framework of hydrodynamic modelling, topography is classically obtained by an inter-

polation of punctual field elevation surveys. A methodology, based on block conditional simu-

lations, is presented to enhance mapping accuracy, using contour lines extracted from flooded

areas in remote sensing data.

I INTRODUCTION
Hydrodynamic models in two dimensions require a precise knowledge of the domain topog-

raphy. However, as far as the modelling of great rivers or lakes is concerned, few accurate

topographic records are generally available to accurately model the floodplain topography. The

usual way to acquire accurate topographic information for hydraulics over floodplain remains

the ground surveys, that provide punctual values at a very high cost. Based on these points,

usual interpolation schemes often yield a too coarse and inaccurate topographic map for a re-

alistic hydrodynamic modelling. Remote sensing data such as Lidar or stereo-photogrammetry

data on non vegetated areas, constitute a good alternative to obtain large scale information, but

yield other issues of acquisition and data processing. In addition, topographic Lidar operat-

ing with near-infrared lasers are still not suitable for an exhaustive survey of floodplains where

submerged areas remain.

Progress in remote sensing data repeatability and spatial resolution now allows the automatic

monitoring of water surfaces delineation from areal or satellite images either in optical or radar

domains (see e.g. an application to the Inner Niger Delta in Ogilvie et al. (2015)). As for the

recently launched Sentinel sensors, these data are becoming widely available with increasing

spatial and temporal resolutions, allowing in turn the spatio-temporal monitoring of flooded

areas. Flood dynamics from remote sensing data are known to be informative on floodplain

topography for long (see e.g. Schumann et al. (2007) or Hostache et al. (2010)). Indeed, the

extracted flooded areas may be considered as iso-elevation contour lines, as the hypothesis can

be made that all the points located on the water/soil limit have the same elevation. If contour line

elevation remains unknown, rank between the detected contour lines as well as between every

contour line and surrounding topographic data points are known. Assuming this information,

the next challenge is thus to develop a spatial data fusion method of ordered contour lines data

and usual elevation data points to better model the floodplain topography.

Mixing punctual ranked and continuous data in spatial estimation was already proposed in liter-

ature, mainly to deal with highly skewed field distribution (Yamamoto, 2000) or for very large

spatial datasets (Cressie and Johannesson, 2008). These methods used the uniform score trans-

form and back-transform based on the standardized rank estimation (Saito and Goovaerts, 2000)

to prevent the right estimate distribution and limit the smoothing effect of kriging. Uncertainty
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assessment of resulting punctual kriging estimates was proposed thanks to the transformation

process (Yamamoto, 2007). Other methods also exist to quantify the uncertainty of contour

lines in random fields (Lindgren and Rychlik, 1995; Wameling and Saborowski, 2001). But

in these studies, the objective was to quantify the uncertainty in contour lines location and not

to quantify the uncertainty of contour lines level for a known location. Consequently, these

different studies only partly touched the problem we face.

The objective of this paper is to propose a method to estimate the elevation of the ranked contour

lines from data points. This method starts from block conditional simulations estimates filtered

on rank statistics. After contour line elevation estimate, a usual kriging is performed to recon-

struct a topographic map over the floodplain. Starting from a synoptic and theoretical example,

the principles, advantages, properties and limitations of the proposed method are exposed. The

spatial accuracies obtained in contour lines estimates and topographic map are thus compared

to the usual block kriging estimates.

II MATERIAL AND METHODS

2.1 Case study generation
A reference exhaustive elevation field Z(s) on a floodplain D was generated from a Gaussian

spatial covariance model with range 20, sill 1 and no nugget effect. The resulting field is

centered on μ = 10 and respects distribution N(μ, σ) (see Figure 1-left): the blue colours

represent lower floodplain elevations meanwhile the yellow and green stem for higher elevation

areas. D is a 100 m×100 m area and the dataset was generated on gridded D with resolution

r = 1 m, r denoting both the remote sensing image spatial resolution and the desired end-user

topographic map resolution.

20 40 60 80 100

0
20

40
60

80
10

0

6.5

10

13

20 40 60 80 100

0
20

40
60

80
10

0

8

9

10

11

12

+++++++

+++++++++++++
+++
++++++

+++++
++++

+++
++++
++++++

++++++++++++++++++++++++++++++++++++

+++++
++++

+++++
++++++++++++++++++++++++

++++++++++++
++++
++++
++++
++++
++++++++++++++++++++++++++++++++++++++++++++++++

20 40 60 80 100

0
20

40
60

80
10

0

8

9

10

11

12

++++++++++++++++
++++
+++++

++++++++++++++++++++
++++++++

+++++++++++++++++++++++
++++++++

+++
++++

+++++
++++

++++
++++

+++
+++
+++
++++
+++++

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

+++++++++++++++ ++++++++

++++++++++++++
+++++
++++++

+++
+++
+++
++++
++++++

++++++++++
++++++++++++++++++++++++++++++++++++++++++++++

++++++++
++++

+++
++++
++++++++++++++++

+++++
+++++

++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

++++++++++++++++++++++++++++++++++
+++++++

++++

+++++++++++++++++++++++++++++++

Figure 1: Generated case study. Left: Simulated elevation field over D; Middle: flooded area at time 1

(blue) and resulting rasterized contour (black crosses); Right: flooded area at time 2 (blue) and resulting

rasterized contour (black crosses).

To reproduce the remote sensing data support (Ogilvie et al., 2015), flooded areas were gen-

erated and delineated at resolution 0.5 m for two different times t1 and t2 during rising water:

when areas lower than 9.5 m (Fig. 1-middle) and 8.5 m (Fig. 1-right) respectively are flooded.

Contour polylines were generated from these rasterized flooded areas with 0.5 m spatial reso-

lution. The sets of two generated contour polylines C1 and C2 were thus reduced to a set of

polylines vertices sji (j ∈ (1, 2) denoting the polyline) regularly located along the lines (black

cross on figures 1). C1 and C2 contained n1 = 201 and n2 = 520 points respectively. Four

2

Proceedings of Spatial Accuracy 2016 [ISBN: 978-2-9105-4510-5]

 
351 / 366



contour lines correspond to C1 and five to C2 (Fig. 1). When contour lines were connected to

the D boundaries, only vertices within D were considered.

In addition, a sample of n = 250 topographic points s1 . . . sn was randomly selected on D,

excluding points selection at location closer than b = 2 m from polylines (Fig. 2-left). This en-

sures that no data points are located on a polyline, which would make too obvious the estimation

of its elevation. We further assume that contour polylines elevation is unknown but that ranks

between the polylines (i.e. the polyline vertices sji ) and between polylines and surrounding

topographic data points are known and may be computed (Fig. 2-right).
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Figure 2: Generated dataset. Left: Simulated elevation field over D, contour polylines C1 and C2

(black lines) and data points (red points). Right: ranked data (points and polyline vertices) and according

legend.

2.2 Method
The method we developed may be seen as a block conditional simulation process filtered by

rank statistics, where a polyline Cj is seen as a block, i.e. a region corresponding to an uncon-

nected set of vertices. Such simulation is known to be superior to kriging whenever interest

lies in global statements for a region rather than inference on individual points. In the process

described in the algorithm 1 hereafter, assuming a stationary random function, a spatial model

(variogram) γ(h) is first estimated and modelled from the 250 data points s1 . . . sn.

Once the variogram γ(h) is modelled, an ordinary kriging is performed on each polyline ver-

tex. From the kriging, a first estimate of polyline elevation results from vertices averaging.

For polyline Cj , we denote further ẑjko this estimate (corresponding to the usual block kriging

estimate).

Next, a set of N = 100 conditional Multi-Gaussian simulations using the fitted variogram

model and pathing through the 250 s1 . . . sn is performed on each on the sji contour vertices

(Eq. 1):

zcs(s
j
i ) = ẑko(s

j
i ) + (zus(s

j
i )− ẑ∗ko(s

j
i )) (1)

At the end of the conditional simulation, an estimate at polyline scale is computed by averaging

simulated values on vertices. This remains consistent with the usual block kriging estimate

3
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Algorithm 1 Contour polyline estimation process and field reconstruction

1: for j = 1 to j= 2 do
2: Estimate and model the variogram γ(h) from n data points

3: Estimate ordinary kriging ẑko(s
j
i ) on polyline vertices

4: for n = 1 to N = 100 do
5: Draw unconditional multigaussian simulation zus(sk) and zus(s

j
i ) on data location

(k) and polyline vertices (i).
6: Estimate ordinary kriging at vertices from simulated values at data locations z∗ko(s

j
i )

7: Compute conditional simulation on vertices (Eq. 1)

8: Compute N polyline estimate by averaging vertices conditional simulations

9: Filter keeping only polyline estimate conform to the initial ranks

10: Compute polyline estimate ẑj averaging the kept polyline estimates

11: Compute standard deviation estimate from the set of kept polyline estimates

12: Affect polyline estimate ẑj to each polyline vertice sji
13: Perform ordinary kriging on all gridded D points from data z(s1) · · · z(sn) and polyline

vertices estimates ẑj(s
j
i )

since vertices are regularly located along the polyline.

ẑjk =
1

nj

nj∑

i=1

zcs(s
j
i ) (2)

We thus obtain N elevation estimates ẑjk, k ∈ (1 . . . N) for a given contour polyline Cj . Only the

estimates respecting the rank are kept in the following, yielding a set of M estimates (M ≤ N )

for a given polyline. From this set, the final estimate of polyline Cj becomes:

ẑj =
1

M

M∑

k=1

ẑjk (3)

with uncertainty characterized by the standard deviation σCj
of the ẑjk estimates.

In a final step, polyline estimate ẑj is affected to each polyline vertex sji in order to perform, in

addition to the 250 data points a gridded map using ordinary kriging.

III RESULTS
Results obtained for this theoretical test case are given in Figures 3 and 4. Figure 3-left shows

the estimated empirical variogram (dots) and fitted variogram model (lines). Figure 3-right

shows for C1 and C2 the resulting distribution of the estimates using conditional simulation, the

final estimation equal to the average of conditional simulation (black vertical line) compared to

the true value (blue vertical line) or the ordinary kriging (interpolation) estimate (red vertical

line). In this first application, rank was always respected in the conditional simulation and

for the ordinary kriging but, as shown in the following, this will not always be the case. The

estimated elevation obtained for C1 is 8.53 m (8.45 using ordinary kriging) for a true value

equals to 8.5 m, with a standard deviation of the estimate being only 5.37e-03 m. For C2,

the difference between the true elevation (9.5 m) and the estimated value is lower than one

centimetre (3 cm using kriging) with standard deviation of the estimate equals to 3.99e-03 m.

4
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Figure 3: Left: Re-estimated empirical variogram from the n = 250 data points; Right: estimated

elevation for C1 and C2.

Figure 4 shows the reconstructed fields from the method we proposed compared to i) the true

field and ii) the field reconstructed only from the 250 data points without considering the contour

polylines data. A visual comparison suggests better results for the proposed approach. However,

artefacts can bee seen around the pool located at the bottom-right corner of the domain. In this

area, the elevation increases with the distance to the pool minimum but decreases again at

three places. This behaviour can be explained by the fact that very few topographic points are

available around this pool.

On the contrary, the field reconstructed with the ordinary kriging method shows greater differ-

ence to the true field especially on the top part of the domain, despite a high concentration of

ground-truth surveys.

To better assess the precision given by the two approaches, the root mean square difference e
between results and true field is computed. The error value obtained without considering the

contour polylines is equal to 0.232 m, and to 0.199 m for the proposed method.
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Figure 4: Reconstructed elevation fields: Left: true field D; Middle: ordinary kriging reconstructed

field; Right: method (polyline conditional simulation) reconstructed field

This first test suggests that the sampling procedure may influence the results, at least through the

location of acquisition points. To check the robustness of the proposed approach, the process

described above was repeated 100 times, changing the 250 points data sampling.
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Figure 5-left shows the contour polyline C1 and C2 error distribution obtained. Figure 5-right

shows the mean distance to the true field distribution. Clearly, the proposed method using

conditional simulation is more robust with few error variance. The standard deviation of the

results obtained with this approach is 0.056 m (resp. 0.037 m) for the contour line 8.5 (resp.

9.5) compared to 0.183 m (resp. 0.1 m) using the ordinary kriging method.

Rank filtering occurred 10% of the times for the C1 estimation and never for the C2 estimation.

This suggests that rank filtering is useful when contours are in extreme values.
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Figure 5: Errors distribution on 100 random sample sets of 250 data points. Left: Cj estimation

error; Right : mean distance to the true field after reconstruction. The vertical lines represent the mean

of the distribution.

Field survey being very costly, the aim is to reduce to the minimum the required elevation data

points. The test is thus performed again with different numbers of points. An example of result

obtained with a random sample of N = 50 points is given in Figure 6. It can be seen that the

use of contour line enables to retrieve the pools shapes with better accuracy than an ordinary

kriging based only on data points.

The comparison between true field and computed elevation fields with the two approaches is

done using the root mean square error. These results are summarized in Table 1 for random

samples obtained with N = 10 to N = 250. As expected, the error decreases if the number

of available data points is high and the proposed approach always gives better results than the

ordinary kriging.
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Figure 6: Reconstructed elevation fields using only 50 data points: Left: true field D; Middle: ordi-

nary kriging reconstructed field; Right: method (polyline conditional simulation) reconstructed field.

N = 10 N = 50 N = 100 N = 150 N = 200 N = 250
eko 1.064 0.635 0.361 0.403 0.435 0.232

ecs 0.639 0.469 0.329 0.227 0.189 0.199

Table 1: Root mean square errors between true field and reconstructed elevation fields for different N .

IV DISCUSSION AND CONCLUSION
The objective of this work was to put forward a methodology to enhance the accuracy of the

topographic description required by numerical hydrodynamic modelling, by using information

of level lines available from remote-sensing data.

The first results obtained on a totally theoretical example, show that the topographic estimation

benefits from such additional data; and the repetition of the process indicates that this result is

robust to sampling. If the gain in accuracy may seem limited at this stage (about 3 cm in mean

for 250 points), the influence of the sampling rate should be assessed more precisely on the

two approaches, since the benefit taken from additional sources of information is expected to

increase as less ground-truth data are available.

Moreover, a classical random sampling is obviously not the best approach to conduct a field

survey. In the first presented test case, random sampling excluding the direct neighbourhood

of the contour lines yielded a lack of data near the pool located at bottom-right part of the

domain. This produced irrelevant estimation of the topography in some areas. Further tests

are thus planed to infer guidelines in the sampling definition in order to decrease the number

of data points required while maintaining a high accuracy in the results, thus enhancing the

cost/benefice ratio. In the framework of hydrodynamic modelling, this work will integrate

results of uncertainty and sensitivity analyses such as given in Guinot and Cappelaere (2009) or

Delenne et al. (2012).

The methodology developed on theoretical test cases, will be assessed in a real-case study of

the hydrodynamic modelling of the Vaccares lagoon for which amount of data are available for

validation.
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